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ABSTRACT

This review attempts to assess the nature and the role of cover for riverine fish
assemblages. Although early identified as a key factor for fish distribution, especially for
salmonids, cover (i.e. woody debris, undercut banks, boulders, turbidity...) still remains the
variable least considered in the studies of fish habitat relationships. This is mainly due to
the diversity of ecological functions of cover structures in fish assemblages. Cover
structures are structuring components of fish habitat and contribute to the biological
productivity of streams. But, at the individual scale, cover fulfils three main functions:
protection against predators, visual isolation reducing competition, and hydraulic shelter. In
fact, the use of cover by fish results from a trade-off between the costs and the benefits
associated with its use. Although the relationships between fish and cover appear
extremely complex and context-specific, a growing body of evidence highlights the potential
role of cover for management purposes.
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NATURE ET FONCTIONS DU COUVERT 
POUR LES POISSONS LOTIQUES.

RÉSUMÉ

Cet article décrit la typologie ainsi que les fonctions du couvert pour les poissons
lotiques. Identifié très tôt comme un facteur explicatif de la distribution des poissons,
principalement chez les salmonidés, le couvert (i.e. débris ligneux, sous-berges, blocs,
turbidité...) demeure néanmoins la variable la moins considérée dans l’étude des relations
habitat-poissons. Ceci s’explique notamment par les fonctions écologiques très diverses
que le couvert remplit vis-à-vis des assemblages piscicoles. Les structures pourvoyeuses
de couvert sont des agents structurants de l’habitat piscicole et contribuent à la
productivité biologique des cours d’eau. Au niveau du microhabitat du poisson, le couvert
remplit trois fonctions majeures : anti-prédation, isolation visuelle limitant la compétition, et
abri hydraulique. En fait, l’utilisation du couvert par les poissons résulte d’un compromis
entre les coûts et les bénéfices associés d’où l’extrême complexité de cette relation qui
semble plutôt spécifique à un contexte donné. Malgré les difficultés d’extrapolation, de
nombreux travaux mettent en évidence la signification écologique ainsi que l’utilisation
potentielle du couvert pour une gestion optimale des ressources piscicoles.

Mots-clés : couvert, abri, poissons lotiques, habitat piscicole.
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INTRODUCTION

At all the levels of their organization, riverine fish assemblages depend on physical
characteristics of habitat. Species richness increases with watershed size (GUÉGAN et al.,
1998) and at the local scale with habitat diversity (GORMAN and KARR, 1978;
SCHLOSSER, 1982, 1985, 1987). Numerous studies, mainly dealing with the association
of upland stream salmonid assemblages with woody debris, revealed the importance of
cover as a key factor governing fish distribution (BOUSSU, 1954; GRANDMOTTET, 1983;
ANGERMEIER and KARR, 1984). Cover, at the scale of fish microhabitat, fulfils three main
functions for individuals: protection against predation, visual isolation reducing competition,
and hydraulic shelter. Although field studies often infer the underlying mechanisms that link
fish with cover, it turns out that cover structures (e.g. woody debris, undercut banks,
macrophytes...) are involved in the control of fish assemblages from upland streams to
large rivers (DOLLOFF, 1986; THÉVENET, 1998). Despite the large amount of research
that has been conducted, the real impact of cover on population dynamics and biodiversity
remains poorly understood.

Numerous engineering works combined with the growing expanse of human
understructures have caused strong dysfunctioning of temperate streams (GURNELL et al.,
1995). Alteration of hydrologic and thermal regimes, degradation of water quality, clearance
of riparian ecotones, and removal of instream cover have all contributed to the degradation
of fish habitat and the decline of species (MAITLAND, 1995). Stream restoration is still
rarely undertaken except in small salmonid streams (GORE and SHIELDS, 1995) and
usually attempts to recreate pool-riffle patterns, to provide cover for fish, and to improve
spawning gravel areas (SWALES and O’HARA, 1980; COWX et al., 1986; GORE and
SHIELDS, 1995). However, as early as 1939, ELTON in his « On the Nature of Cover »
expressed the urgent need to study extensively the complex nature of cover for animal
communities because of this connection with schemes of wildlife preservation and
restoration. In the last decade, some research has been conducted on lowland streams and
large rivers (SLANEY et al., 1994; GORE and SHIELDS, 1995; THÉVENET, 1998; CROOK
and ROBERTSON, 1999), which has then set the stage for a better understanding of the
relationships between riverine fish and cover as prerequisites to fisheries management and
predictive modelling.

This review is divided into six sections and is concerned with the description of
physical structures or specific conditions identified by the literature as cover and with the
role of this cover for riverine fishes. The first section defines cover, gives a typology of
cover, and techniques for the assessment of cover and associated biological variables. The
next sections consider the indirect impact of cover structures in diversifying fish habitat
(section 2) and contributing to stream biological productivity (section 3). The fourth section
reviews field studies dealing with the effect of cover structures at the population level. The
fifth section identifies the functional basis of this relationship, mainly at the individual scale.
This section describes the functions of cover relative to biotic interactions amongst fish
(predation, competition, foraging) and hydraulic conditions (normal, flood, drought) and
then the role of cover during critical periods such as the spawning and the winter seasons.
This section ends with the functional significance of cover use in stream-dwelling fish as a
dynamic trade-off among costs and benefits associated with the use of cover. The last
section highlights the potential role of cover in lowland streams and management
perspectives.

1 DESCRIPTION OF COVER AND METHODOLOGY

Cover definition and typology

Although cover is generally considered in the ichthyological literature as a habitat
variable (FAUSCH and WHITE, 1981; BOVEE, 1982; GRANDMOTTET, 1983; HEGGENES
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and TRAAEN, 1988) it is probably the least well defined because of major difficulties to
quantify it, evaluate its scale of action on fish, but especially to unambiguously ascribe to
it one function for the fish, mainly in descriptive field studies. It is generally intimately
associated with the concepts of habitat structure, habitat complexity or heterogeneity, as
well as with the terms « shelter » and « refuge ». Sensu lato, cover is a generic concept
without spatial restriction, including instream, overhanging or riparian structures, but also
a specific condition that provides shelter from predators, competitors, or adverse abiotic
conditions (swift currents, bright sunlight, extreme temperatures), as well as foraging and
spawning sites. Sensu stricto, cover is an element perceived at the scale of fish
microhabitat and that fulfils three main functions for fish: antipredation, visual isolation that
decreases competitive interactions, and hydraulic shelter (FAUSCH, 1993). Thus, the term
cover can be applied to substratum crevices and boulders, undercut banks, woody debris,
algae, submerged and riparian vegetation, shading, water depth heterogeneity, water
turbulence and turbidity, and also artificial structures (Table I and references therein). Water
depth heterogeneity, surface turbulence, and turbidity that are in fact inherent conditions of
lotic systems have a major although largely undocumented role. Alone they may fulfil the
cover requirements of fish and thus cause equivocal results in attempts to link fish density
and instream or overhanging structures.

Table I
Typology of physical structures and specific conditions considered as cover for
riverine fish, with some illustrative references.

Tableau I
Typologie des structures physiques et des conditions spécifiques pourvoyeuses
de couvert pour les poissons d’eau courante ainsi que quelques références
illustratives.
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COVER TYPOLOGY REFERENCES 

Substratum (crevices, 
cobble, boulders) 

FAUSCH, 1984; BJORNN and REISER, 1991; GRIFFITH and 
SMITH, 1993; STREUBEL and GRIFFITH, 1993; SHULER et al., 
1994 

Undercut banks BOUSSU, 1954; BRUSVEN et al., 1986; FRAGNOUD, 1987; LIM 
et al., 1993  

Woody debris (logjams, 
trunks, branches) 

BOUSSU, 1954; ANGERMEIER and KARR, 1984; DOLLOFF, 
1986; FAUSCH and NORTHCOTE, 1992; INOUE and NAKANO, 
1998; THÉVENET, 1998 

Rootwads, snags BUSTARD and NARVER, 1975; SHIRVELL, 1990; LEHTINEN 
et al., 1997 

Fine vegetative debris 
(leaves, twigs) 

CULP et al., 1996; MATTHEWS, 1998 

Algae mats GELWICK, 1995 cited in MATTHEWS, 1998 

Aquatic macrophytes 
SAVINO and STEIN, 1982; 1989 ; GOTCEITAS and COLGAN, 
1989; HECK and CROWDER, 1991; HAURY and BAGLINIÈRE, 
1996 

Riparian vegetation 
WESCHE et al., 1987; SCHIEMER and ZALEWSKI, 1992; 
PENCZAK, 1995; COLLARES-PEREIRA et al., 1995; COPP and 
BENNETTS, 1996  

Shading HELFMAN, 1981; HERMANSEN and KROG, 1984; MEEHAN 
et al., 1987; LYNCH and JOHNSON, 1989; MCCARTT et al., 1997 

Water depth 
heterogeneity 

SCHLOSSER, 1987; HARVEY and STEWART, 1991;  
ANGERMEIER, 1992; LONZARICH and QUINN, 1995  

Water turbulence GIBSON, 1978; HEGGENES and TRAAEN, 1988; HEGGENES 
et al., 1991 

Water turbidity LYNCH and JOHNSON, 1989; GREGORY, 1993; GREGORY and 
GRIFFITH, 1996 

Surface ice YOUNG, 1995; GREGORY and GRIFFITH, 1996; JAKOBER et al., 
2000 

Artificial structures  SWALES and O’HARA, 1983; HOUSE and BOEHNE, 1985; RILEY 
et al., 1992; RILEY and FAUSCH, 1995 



From upstream to downstream of the fluvial continuum, there is a gradual change in
cover types and in the main functions fulfilled by cover. Upstream where salmonids
dominate, rocky structures, water turbulence, canopy, and instream woody debris constitute
the main cover elements and principally temper the effects of abiotic disturbances and
terrestrial predation, both avian and mammalian (Figure 1). Boulders create a major fish
habitat in high-gradient streams by providing pools with increased water depth and surface
turbulence that may be the only cover available. The canopy is probably one of the most
important cover features affecting fish distribution since its regulates stream temperature,
provides shelter during floods, supplies nutrients and terrestrial invertebrates as fish food,
and instream cover for fish (SCHIEMER et al., 1995). In midreach locations where
rheophilous cyprinids dominate, all cover types become equally represented and temper
the effects of abiotic disturbances and both terrestrial and aquatic predation (Figure 1).
Downstream where lentic cyprinids dominate, turbidity, water depth and rooted
macrophytes fulfil the cover requirements of fish and principally temper the effects of
aquatic predation (Figure 1). This conceptual framework is very general and requires much
fitting according to the geographic, climatic and human contexts.

Figure 1
Typological and functional changes of cover from headwaters to lower
mainstreams (stream fish zonations of HUET (1959) in italics, and ILLIES and
BOTOSANEANU (1963)).

Figure 1
Evolution typologique et fonctionnelle du couvert de l’amont vers l’aval du
continuum fluvial (zonations piscicoles de HUET (1959) en italique, et ILLIES et
BOTOSANEANU (1963)).
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Cover assessment techniques

Besides catchment variables (geomorphology, hydrology, or chemistry), cover has
been identified as an important site attribute having significant correlations with salmonid
populations (FAUSCH et al., 1988; SHIRVELL, 1989) but little effort has been made so far
to integrate cover in existing models (BINNS and EISERMAN, 1979; BOVEE, 1982;
FAUSCH et al., 1988; STONEMAN and JONES, 2000).

Assessment of cover is generally limited to some qualitative description of the
structure present in the sampled area and to some quantitative information such as percent
area covered and volume (STEVENSON and BAIN, 1999). More recently, an effort has
been made to produce more objective measurement methods and distributions of data
compatible with other hydraulic variables (i.e. continuous variables) used in traditional
models (KINSOLVING and BAIN, 1990). By counting the surfaces of submerged objects in
a vertical plane, these authors quantified three cover parameters as follows: cover density
(non-zero planes), complexity (mean number of surfaces counted) and heterogeneity
(variance in surface counts). The most widespread approach is to use field heterogeneity
measures that describe the variations of some variables between adjacent points within the
cover structures (THÉVENET, 1998). For « soft » structures like macrophytes, the simplest
is to express the variations of height at successive points to produce a topographic
complexity index. For « hard » structures like boulders it is to lay a chain from bank to bank
across the substratum and the structures and to quantify the deviation from a flat bottom
(MATTHEWS, 1998). Another approach to quantify heterogeneity is to use formulas
stemming from « information theory » and quantitatively describe the proportions of
different cover classes per variable (GORMAN and KARR, 1978). Globally, such complex
categorizations allow a better understanding of the intrinsic characteristics (e.g. structural
complexity, cavity space) explaining the presence or absence of fish within a cover
structure (LEHTINEN et al., 1997; MONZYK et al., 1997) but the value of more complex
schemes appears questionable. In fact, THÉVENET (1998) defined 10 variables to describe
the structural complexity of coarse woody debris (CWD) but only the percentage area
covered by CWD, probably acting as a surrogate of complexity, explained the density and
diversity of fish in the zone investigated.

Some authors have suggested that fish are mainly attracted by associated features,
such as shade or hydraulic diversity, rather than physical attributes of cover (SHIRVELL,
1990). Little research has been completed on this aspect because it is time-consuming in
the field and difficult to perform practically. Fish attraction for cover is largely influenced by
the architectural arrangement of cover structure (i.e. complexity, cavity space...) and also
the diversity of other associated habitat features generated by the structure (hydraulic
heterogeneity, light intensity...) (JOHNSON, 1993; LEHTINEN et al., 1997; MONZYK et al.,
1997; THÉVENET, 1998). For example, brown madtoms (Noturus phaeus) used more
frequently woody debris having greater cavity space and structural complexity, suspended
leaves, and located beneath undercut banks or next to areas of high flow (MONZYK et al.,
1997). One can consider that these two kinds of intrinsic characteristics may act in synergy
in the process of cover selection, and examination of these physical variables is really
needed to optimize the design and location criteria of cover structures.

As cover management practices are now the basis for the conservation of either
target species or assemblages, it becomes essential to standardize measurement
techniques. This will permit real comparisons between studies and the best evaluation of
the causes of failure or success of some restoration works. However, a detailed review of
techniques relating to cover is beyond the scope of the present paper (see e.g. BAIN and
STEVENSON, 1999). Moreover, it seems essential to take account of variables describing
cover in habitat models as they may contribute both to the theoretical understanding of the
fundamental processes and to the prediction of changes in standing crop following cover
enhancement practices.
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Assessment of biological attributes

Most of the field assessments of cover use by riverine fish have relied on
measurements of fish abundance and species number and an assortment of cover features
in a stream reach. The most widespread approach is to perform a population inventory
within the sampled zone (cover structure, mesohabitat, or reach) by successive pass
removal electrofishing after confining the sampled zone with blocking nets (but see
THÉVENET, 1998 for an open sampling technique). Rarely were abundances of benthic
and drifting invertebrates jointly undertaken (ANGERMEIER and KARR, 1984; ELLIOT,
1986). Since the measure of fish density cannot account for the significance of cover for
population dynamics, at least for territorial species such as salmonids, some authors have
also marked individuals and used Capture-Marking-Recapture (CMR) for addressing the
demographic mechanisms (growth, survival, or immigration) responsible for changes in
population abundance or biomass with changes in cover structures (GOWAN and FAUSCH,
1996; QUINN and PETERSON, 1996; HARVEY 1998). In many instances, visual
observation from the banks (BACHMAN, 1984) and by snorkelling (FAUSCH and WHITE,
1981; GRIFFITH and SMITH, 1993), or radiotelemetry (TODD and RABENI, 1989; YOUNG,
1995; ALLOUCHE et al., 1999; HARVEY et al., 1999) has allowed either counts or
behavioural records.

These different kinds of observation methods may have some sampling bias. At the
reach scale electrofishing is well adapted when using blocking nets but at the scale of the
cover structure it may overestimate cover use because of fright bias (e.g. refuging
behaviour of BOVEE, 1982). To overcome this bias, a sampling technique using pre-
installed anodes (BAIN et al., 1985) that surprise the fish within the cover habitat could be
more efficient. Direct underwater observation may underestimate the use of cover in
shallow, turbid, or fast-flowing water, in highly structured instream cover, and at low water
temperature because fish are difficult to see (HEGGENES et al., 1990). Finally, despite its
significant costs radiotelemetry provides a finer degree of spatial and temporal resolution
and thus allows to determine the pattern of activity in relation with cover features and to
quantify their function (ALLOUCHE et al., 1999). However, it is noteworthy that telemetry
is still not possible for small fishes (LUCAS and BARAS, 2000).

2 EFFECTS OF COVER STRUCTURES ON HABITAT FEATURES

Some of the elements providing cover (e.g. boulders, CWD) are also structuring
agents of fish habitat at various spatio-temporal scales. These elements provide
heterogeneity of light intensities and hydraulic variables among microhabitats and within
mesohabitat units but can also be involved in the distribution pattern of mesohabitat units
(SHIELDS JR and SMITH, 1992; ABBE and MONTGOMERY, 1996; GIPPEL et al., 1996).
For example, woody debris may contribute to geomorphic processes such as step-pool
profile formation, waterfall formation, initiation of vegetated islets on gravel bars, or
backwater formation (BILBY and WARD, 1989; ROBISON and BESCHTA, 1990; GURNELL
et al., 1995; RICHMOND and FAUSCH, 1995). By increasing the diversity of the stream
bed, trapping gravel, and creating shallow gravel bars, woody debris or stream
enhancement structures are used to increase spawning habitat for salmonids (HOUSE and
BOEHNE, 1985). Although the effects of woody debris decrease as one goes downstream
in the river network (HARMON et al., 1986; INOUE and NAKANO, 1998; PIEGAY et al.,
2000), GURNELL et al. (1995) suggested that their presence induces increased physical
habitat diversity in all sizes of streams. Finally, macrophyte cover as a « soft » structure is
also known to structure physical habitat by decreasing current velocity and incident light in
a seasonal cycle and to affect fish assemblages in various ways (HAURY and
BAGLINIÈRE, 1996).
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3 EFFECTS OF COVER STRUCTURES ON BIOLOGICAL PRODUCTIVITY

Cover structures may both indirectly and directly contribute to the nutrient budget
and trophic dynamics of streams by increasing the trapping of allochthonous material,
enhancing primary and secondary production, and increasing the abundance and diversity
of invertebrates.

First, since allochthonous input is the greatest energy source for food webs in most
streams (HILDREW, 1992), cover structures indirectly influence productivity by playing a
significant role as retention devices, allowing the processing of organic matter and
nutrients, and controlling the rate of transport of material downstream (ANGERMEIER and
KARR, 1984; GURNELL et al., 1995; HAURY and BAGLINIÈRE, 1996). Second,
communities of algae, plants, and invertebrates inhabiting and decomposing organic matter
from cover structures are major food items for many fishes (DUDLEY and ANDERSON,
1982; BENKE et al., 1985; SUREN and WINTERBOURN, 1992; HAURY and BAGLINIÈRE,
1996). The contribution of one type of structure to primary and secondary production
depends on its overall abundance, quality as a substratum and location within the
catchment (HARMON et al., 1986). For example, woody material itself has little nutritional
value but the biofilms associated with the wood are most beneficial to macroinvertebrates
(HAX and GOLLADAY, 1993).

In streams of all sizes, the abundance and diversity of invertebrates, a major source
of food for many fishes, are strongly correlated to the degree of structural complexity of
habitats (macrophyte beds, substratum or wood crevices) (O’CONNOR, 1991; DOUGLAS
and LAKE, 1994; COGERINO et al., 1995; DOWNES et al., 1998). In lowland sand-bottom
streams, woody debris support invertebrate production that is among the highest in lotic
systems (SMOCK et al., 1989). Snags which represented only 4% of the total habitat
surfaces provided 60% and 78% of the benthic and drifting invertebrate biomass,
respectively, which made up 60% of the diet of three sunfish species (Lepomis) and pirate
perch (Aphredoderus savanus) (BENKE et al., 1985). Invertebrates use cover structures as
refuges from predation and adverse abiotic conditions but also as a feeding or a
reproductive habitat. Some species directly ingest the surface of the structures, feed upon
associated organisms (bacteria, fungi, algae and periphyton), or use it as an attachment
site for filter feeding or emergence (DUDLEY and ANDERSON, 1982; HARMON et al.,
1986; PHILLIPS and KILAMBI, 1994).

However, some types of cover can decrease stream productivity. This principally
concerns the wooded riparian cover that dramatically affects primary production and
organic matter inputs. In the heavily shaded sections of the upper and middle reaches of
the river continuum this may reduce autochthonous matter production and consequently
invertebrate and fish biomass. Clear-cut reaches due to logging practices in the United
States had higher temperatures, more periphyton, benthos, and fish than buffered or old-
growth reaches, as increased light reaching the stream stimulated production and extended
the summer growing season (MURPHY et al., 1986). But these growth benefits are known
to be rapidly offset by a reduction in the amount of critical overwintering instream cover
and increasing fish mortality (JOHNSON et al., 1986).

4 EFFECTS OF COVER STRUCTURES ON FISH POPULATIONS

Many authors have demonstrated correlations between cover features and
population abundance, biomass, survival, or diversity of fish assemblages based on field
observations in coldwater streams (LEWIS, 1969; NIELSEN, 1986), warmwater streams
(ANGERMEIER and KARR, 1984), and more recently in large rivers (LEHTINEN et al.,
1997; THÉVENET, 1998). A lack of suitable cover habitat has been identified as a
potentially important factor affecting overwinter population density (BJORNN, 1971;
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BUSTARD and NARVER, 1975; RIMMER et al., 1983) and recruitment or early survival of
some salmonid species (MORTENSEN, 1977; QUINN and PETERSON, 1996). Some
authors have also reported the importance of cover in lowering the dispersal patterns and
the extent of habitat range of fish populations (LEWIS, 1969; BJORNN, 1971; APARICIO
and DE SOSTOA, 1999; HARVEY et al., 1999; RONI and QUINN, 2001a) reinforcing the
hypothesis that the degree of structuring of habitats influences movement rates (BAADE
and FREDRICH, 1998).

Experimental field studies which manipulated cover features by removal or addition
(treatment vs control sections) and measured changes in fish abundance or biomass (pre-
vs post-treatment comparisons) confirm these empirical results. Most studies validate the
relationship between cover abundance and fish density or biomass, principally of salmonid
species (BOUSSU, 1954; SAUNDERS and SMITH, 1962; HOUSE and BOEHNE, 1985;
DOLLOFF, 1986; ELLIOT, 1986; RILEY et al., 1992; LIM et al., 1993; RONI and QUINN,
2001b) but also of cyprinid species (SWALES and O’HARA, 1983; THÉVENET, 1998). But
in contrast, BJORNN et al. (1991) and KEITH et al. (1998) found that the summer
distribution of juvenile salmonids (Oncorhynchus kisutch, Salvelinus malma) was not or
little affected by the presence of cover. In fact, comparisons between field studies are
extremely difficult since they differ by numerous parameters: species and life-stages, cover
types, stream characteristics, spatio-temporal scales, intensity of biotic interactions, and
statistical reliability (BJORNN et al., 1991).

As a matter of fact, although cover management practices are widely used at the
reach scale, whether cover addition really increases stream carrying capacity rather than
simply redistributing the existing population remains controversial. Classical literature on
marine and lentic systems suggests that artificial reefs redistribute, attract and aggregate
fishes from surrounding areas due to behavioural preferences but do not increase overall
production (BOHNSACK, 1989; LYNCH JR and JOHNSON, 1989; MORING and
NICHOLSON, 1994; GROSSMAN et al., 1997). Recent works of GOWAN and FAUSCH
(1996) (see also RILEY et al., 1992; RILEY and FAUSCH, 1995) using a demographic
CMR method over an 8-yr study (= 4 generations for fish) greatly revived the controversy
for streams. They revealed that within 2 years after installation, log drop structures caused
significant increases in pool volume, depth, and cover, as well as increases in the
abundance and biomass of adult trout (Salvelinus fontinalis, Salmo trutta,
Oncorhynchus mykiss), but not juveniles. Furthermore, they reported that populations
responded through immigration rather than in situ processes such as increased
recruitment, survival or growth, but concluded that fish survival and biomass at the reach
scale might have increased since immigrants left a less suitable habitat where they might
have died and subordinate individuals could fill this less suitable habitat and increase their
own survival.

More generally, some indirect evidence supporting increased production due to cover
structures can be provided by demonstrating the existence of increased growth, one of the
hypothesized production mechanisms directly linked with individual fitness. However, in
most field studies where confounding factors are numerous, it has been found that the
presence of cover has no (SAUNDERS and SMITH, 1962; FAUSCH and NORTHCOTE,
1992; FAUSCH et al., 1995; FLEBBE and DOLLOFF, 1995; GOWAN and FAUSCH, 1996;
HARVEY, 1998) or even a negative effect (WILZBACH et al., 1986) on growth although
increased growth rates are sometimes attributed to the presence of rootwad cover
(NIELSEN, 1992) or riparian cover (VILA-GISPERT et al., 2000). Results obtained in
laboratory experiments are also equivocal due to difficulties in defining working hypotheses
and to methodological problems (e.g. SPALDING et al., 1995 and comments in COUTANT,
1996). Finally, aquaculture research reported few results with real benefits to growth, food
conversion, and general health after rearing fish with overhead covers (WAGNER and
BOSAKOWSKI, 1994).
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So far, the relationship between fish populations and cover is mainly based on North
American studies where the role of woody debris is essential in geomorphic processes
(SAUNDERS and SMITH, 1962; DOLLOFF, 1986; HOUSE and BOEHNE, 1986). More
recently, results derived from other geographical regions where riparian forests have less
effects on these processes have validated the role of CWD for fish abundance and diversity
(LANGFORD and HAWKINS, 1997; INOUE and NAKANO, 1998; THÉVENET, 1998). It
seems that even in systems where riparian corridor is sparse and instream woody debris
are scarce, debris probably influence fish assemblage structure, diversity and abundance,
but this remains largely undocumented (LEHTINEN et al., 1997).

5 FUNCTIONAL ROLES OF COVER

Fundamentally, the association of fish with cover depends on basic stimuli (taxes)
which are instinctive orientation responses to physical structure, light or current.
Experimental studies have demonstrated that selection of shelters may be initiated by
negative phototaxis (MCCRIMMON and KWAIN, 1966; DEVORE and WHITE, 1978;
HELFMAN, 1979), positive thigmotaxis (DEVORE and WHITE, 1978), and negative
rheotaxis (HAINES and BUTLER, 1969). Generally, shade was the more important stimulus
and cover structures providing the most complex association of stimuli (visual, tactile,
rheotactic) were used preferentially (HAINES and BUTLER, 1969). Although less studied,
some species may use instream cover as landmarks for orientation purposes. Using visual,
chemical, and lateral line stimuli directly from cover or indirectly from water movements,
fish may be able to construct cognitive maps of their habitat allowing them to orientate
efficiently within their home range (CROOK and ROBERTSON, 1999). Some research
works showed that learning of global or local habitat features like cover is important for the
expression of various behaviours (territorial, refuge, foraging, predator and competitor
avoidance...) (KIEFFER and COLGAN, 1992).

However, the association of fish with cover is a complex phenomenon involving
numerous functions for riverine fish. The underlying mechanisms have been clearly
demonstrated by behavioural experiments performed in aquaria and artificial streams. This
section first presents the functions of cover relative to biotic interactions, hydraulic
conditions and during critical periods such as the spawning and winter seasons. In fact, a
given taxon may use cover structures for several or only one function and the relative
magnitude of these functions greatly depends on life history traits and environmental
conditions. This section will be concluded by analyzing costs and benefits associated with
cover use by riverine fish.

Biotic interactions

Predation

Threat of predation plays a prominent role in habitat selection by fish and induces
real demographic consequences affecting prey population dynamics and strong indirect
ecological effects (POWER et al., 1985; FRASER and GILLIAM, 1992; LIMA, 1998).
Assessments of the mortality caused by piscivores in lotic communities are always
equivocal, mainly because they are underestimated. Although some studies reported high
impact (ALEXANDER, 1979; WHITE and HARVEY, 2001), long-term effects of predation
are generally considered limited (DRAULANS, 1988; MATTHEWS, 1998).

Piscivorous birds may be efficient predators in small streams whereas piscivorous
fish may pose a more constant threat further downstream. As a consequence, fishes often
show strong size-specific partitioning by depth (SCHLOSSER, 1982; HARVEY and
STEWART, 1991), leading to the conceptual framework that in small streams (1st-3rd orders)
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the highest risk of predation in shallow habitats is for large fish, due to non-gape limited
predators (birds and mammals) whereas in deeper habitats it is for small fish from gape-
limited, piscivorous fish (POWER, 1987; SCHLOSSER, 1987). Some laboratory and field
experimental studies have clearly demonstrated that terrestrial predation risk from
wading/diving animals is much higher for water-column species in shallow pools than in
deep pools and added cover markedly increases their survival (HARVEY and STEWART,
1991; LONZARICH and QUINN, 1995; REINHARDT and HEALEY, 1997). Hence, beyond
physical structures that provide shelter from predators, water depth heterogeneity
constitutes an essential cover feature regulating predator-prey interactions.

Sheltering is a common antipredator tactic in fishes since the structural complexity
of cover reduces the predator foraging success (CROWDER and COOPER, 1982; ROZAS
and ODUM, 1988; EKLÖV, 1997; KATS and DILL, 1998). Several studies have shown that
small fish taxa increased cover use in the presence of fish predators (WERNER et al.,
1983b; HUNTINGFORD et al., 1988a; RAHEL and STEIN, 1988; BUGERT and BJORNN,
1991; BUGERT et al., 1991) and bird predators (HOLIERHOEK and POWER, 1995;
REINHARDT and HEALEY, 1997) or remained in risky sites only if those sites were
structurally complex (FRASER and CERRI, 1982). The underlying mechanisms of the
reduction in predator foraging success included a limitation of manoeuvrability of predators,
a reduction in visual contacts, and an increase in evasive abilities of prey (HELFMAN,
1981). Empirical data either suggested that a threshold level of cover density is necessary
to reduce predator foraging success (SAVINO and STEIN, 1982; GOTCEITAS and
COLGAN, 1989) or that predation rates are a linear decreasing function of cover
complexity (CROWDER and COOPER, 1978; NELSON and BONSDORFF, 1990).
Furthermore, empirical and theoretical studies have long suggested that intermediate
structural complexity of cover maximizes predator feeding rates and in the long-term may
stabilize predator-prey interactions by preventing prey extinction (CROWDER and
COOPER, 1982; SAVINO and STEIN, 1982; but see MCNAIR, 1986). However, piscivores
are differentially affected by varying degrees of cover complexity as a result of species-
specific differences in predator efficiency and prey antipredator tactics (ANGERMEIER,
1992; EKLÖV and PERSSON, 1995). Ambush piscivores, like northern pike Esox lucius or
bass Micropterus spp., that rely on cover to conceal themselves, may have high foraging
success at relatively high cover density (HECK and CROWDER, 1991).

Several studies also suggested that fish can control their escape decision, which
incurs costs (energy expenditure and lost opportunity to engage in other activities), through
their proximity to cover. Flight initiation distance (i.e. between predator and prey) increases
as distance to cover increases (MCLEAN and GODIN, 1989; DILL, 1990) or when cover
density is low (GRANT and NOAKES, 1987). Additionally, FRASER (1983) noted that adult
creek chub (Semotilus atromaculatus) aggregated near a shelter if this was the only one,
but dispersed if multiple shelters were available. Thus, the occurrence of cover may play a
considerable role in foraging-site selection and dispersal patterns at the scale of the activity
area (BACHMAN, 1984).

In comparison with lentic environments, relatively little research has been carried out
in streams but cover probably enhances prey fish persistence by reducing predator
efficiency. In the field, the antipredator function of cover (vs foraging or hydraulic purposes)
is often inferred rather than directly demonstrated (but see EVERETT and RUIZ, 1993;
WHITE and HARVEY, 2001). Furthermore, an understanding of the emergent impact of
multiple predators (aquatic vs terrestrial or searching vs sit-and-wait predators) on prey can
provide insights for guiding fishery practices of cover structure management (SIH et al.,
1998). For example, by avoiding fish predators that hunt beneath cover, prey fishes may
become more vulnerable to avian predators as they move into open areas and vice-versa.
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Competition

Competition between/among species is actually accepted as a potential driving force
that shapes fish assemblages and prevails in stable systems when resources become
limited (MATTHEWS, 1998). In stream-dwelling salmonids, field observations and
laboratory experiments suggest that selective segregation for cover use (i.e. innate cover
preference resulting from natural selection) plays a major role in the coexistence of closely
related species (CUNJAK and GREEN, 1983; DOLLOFF and REEVES, 1990). However,
there is also experimental evidence on interactive segregation (i.e. by agonistic
interactions) between salmonid species either for energetically profitable positions (e.g.
hydraulic shelter adjacent to swift current) (FAUSCH, 1984), or for resting cover (CARON
and BEAUGRAND, 1988; GREGORY and GRIFFITH, 1996). FAUSCH and WHITE (1981)
showed that in a small stream with scarce resting cover, introduced brown trout (Salmo
trutta) aggressively excluded indigenous brook trout (Salvelinus fontinalis) from cover. In a
field analysis of habitat use in sympatry and allopatry, BARAN et al. (1995) revealed that
brown trout displaced rainbow trout (Oncorhynchus mykiss) from preferred positions
beneath undercut banks.

As early as 1958, KALLEBERG quantified the visual isolation function of substratum
cover for territorial juvenile salmonids in summer since addition of large stones resulted in
less aggressive behaviour, smaller sizes of territories, and allowed more individuals to exist
in close proximity. There is also some inferential evidence supporting the importance of
visual barriers provided by instream cover in increasing salmonid abundance (DOLLOFF,
1986; MESICK, 1988; MCMAHON and HARTMAN, 1989; BUGERT et al., 1991; FAUSCH,
1993). SUNDBAUM and NÄSLUND (1998) quantified the better condition maintained by
juvenile brown trout in channels with instream cover because of reduced aggressive
interactions and swimming activity. Recently, ARMSTRONG and GRIFFITHS (2001) found
that sheltering behaviour of wild juvenile Atlantic salmon is density-dependent reinforcing
the hypothesis that instream cover availability may be very important in salmonid nursery
streams by increasing density-dependent growth and decreasing winter mortality
(MORTENSEN, 1977).

Finally, some studies performed in lentic systems have demonstrated strong intra-
and interspecific competition in sheltered habitats. Under predation risk, sunfish juveniles
were concentrated under macrophyte cover and thereby suffered increased competition for
food (WERNER et al., 1983a; MITTELBACH, 1986). Moreover, shifts in competitive ability
between juveniles of different species driven into refuges have been shown. For example,
a growth advantage of roach (Rutilus rutilus) in open water was reversed to a growth
advantage of perch (Perca fluviatilis) in cover habitat (PERSSON, 1993). Thus, structural
complexity of cover can affect prey diversity by providing competitive refuges for certain
species.

It appears that for highly territorial species or ambush piscivores, competition among
individuals having the same cover requirements may eventually lead to the exclusion of one
of the individuals through interference if cover is scarce. Individuals less able to defend
cover sites may suffer increased predation and decreased growth. For non-territorial
species like shoaling cyprinids, competition for cover probably rarely occurs whereas
competition for food between small taxa restricted to cover may be conceptually an
important mechanism regulating lotic fish assemblages. In spite of these few examples, the
role of cover and associated complexity in either increasing or reducing competition in
running waters has been rarely explored.

Foraging

It has already been pointed out here that cover structures can be hotspots of primary
and secondary production as well as of macroinvertebrate diversity, thus providing rich
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feeding areas for fishes. Both in tropical and temperate streams, many herbivorous fishes
(e.g. armoured catfish, stoneroller, rudd, roach, dace, nase, chub) directly eat attached
algae from hard substrata and to a lesser extent macrophytes (LAMMENS and
HOOGENBOEZEM, 1991; MATTHEWS, 1998). Certain taxa can control standing crops and
patchiness of plant cover by their grazing activities and thus control the availability of
shelter for numerous other taxa (POWER, 1983; MATTHEWS, 1998) as well as invertebrate
standing crop, with strong indirect impacts on insectivores (FLECKER, 1992). Shade
produced by instream cover is also used as camouflage by piscivorous fish that ambush
their prey (HELFMAN, 1981). In the upper Mississippi River, most piscivorous fishes
(walleye, largemouth bass, black crappie) were collected at snag sites (LEHTINEN et al.,
1997). YOUNG (1995) observed that large brown trout occupied deep water habitats near
the bank and close to cover and suggested that the ambush foraging strategy of these
piscivorous fish may account for their use of cover.

Although the complexity of instream cover can increase foraging opportunities for
insectivorous fishes through enhanced secondary production, the direct benefits of cover
for fish depends on species, body size, and feeding mode. Overall, numerous studies have
reported that structural complexity in macrophytes (DIEHL, 1988; SAVINO et al., 1992),
woody debris (EVERETT and RUIZ, 1993), and substratum (POWER, 1992; BECHARA
et al., 1993) may decrease the effectiveness of fish predation on macroinvertebrates. By
impeding their visual field, shade may drastically limit the feeding efficiency of drift-feeders
(WILZBACH et al., 1986; O’BRIEN and SHOWALTER, 1993) that may benefit far more from
cover structures by taking positions directly downstream from these structures (NIELSEN,
1992). At a higher spatial scale, riparian cover may both greatly reduce autochthonous
production of a stream reach thus negatively impacting fish growth, but also provide
terrestrial invertebrates which may constitute a large part, at least seasonally, of the diets
of some species (MASON and MACDONALD, 1982; COLLARES-PEREIRA et al., 1995;
BRIDCUT, 2000; KAWAGUCHI and NAKANO, 2001).

Hydraulics

Normal conditions

In fishes, for sustaining positions, flowing water imposes energetic cost that varies
with season and temperature and depends on their swimming capabilities (FACEY and
GROSSMAN, 1990). Bioenergetic efficiency is affected by the availability of hydraulic
shelter that does not need to be very large to affect local velocities, contrary to antipredator
cover which needs sufficient structural complexity to be efficient. Heterogeneous
substratum granulometry constitutes the most frequent hydraulic cover (e.g. BJORNN and
REISER, 1991).

Beyond this purely energy-saving function, instream cover may create energetically
efficient foraging sites for drift-feeders. In fact, the number of invertebrates drifting through
the fast-flowing areas per unit of time is higher than in the slower, open areas (HILL and
GROSSMAN, 1993). Hence, many fishes maintain sheltered positions from which they dart
into adjacent swift current to capture drift items (BACHMAN, 1984; FAUSCH, 1984). After
the placement of boulders in the Rio Grande River in summer, 65-71% of juvenile and adult
brown trout were observed near boulders (SHULER et al., 1994). The authors suggested
that by creating more feeding sites that are energetically favourable for trout during
summer, boulders may indirectly enhance their body condition and thus overwinter survival.
The energy-optimization utility of these foraging sites has been revealed by simple intake
rate/growth maximization models which try to predict habitat selection by salmonids in
experimental streams (FAUSCH, 1984) and in the field (HUGHES and DILL, 1990;
HUGHES, 1992; GUENSCH et al., 2001). These models showed that individuals ranked
positions according to their potential profit by combining hydraulic, drift and other biological
parameters (detection distance of prey, presence of competitors).
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Floods

Floods are considered major events regulating fish assemblages mainly because of
their beneficial ecological effects over time (habitat formation, allochthonous inputs,
creation of nursery floodplain habitats, food web complexity...) (MATTHEWS, 1998).
However, erosive floods may have immediate negative effects on fish assemblages by
increasing downstream displacement, mortality of free-swimming fish, and destroying nests
and eggs. Moreover, the destruction and the removal of cover structures may induce strong
negative effects by lack of shelter from predators and depression of trophic resources
(MATTHEWS, 1998). Although the behavioural tactics exhibited by fishes during floods
have been less studied, the use of instream cover as hydraulic refuge has been shown and
is known to temper these negative effects (BJORNN, 1971; BUSTARD and NARVER, 1975;
CUNJAK and POWER, 1987; HEGGENES, 1988b; VALENTIN et al., 1994; but see
HARVEY et al., 1999).

For instance, during simulated freshets, most coho salmon (Oncorhynchus kisutch)
emigrated from experimental channels unless complex cover combining low velocity, shade,
and structural complexity was available (MCMAHON and HARTMAN, 1989). Coarse rocky
substratum constitutes an essential hydraulic refuge since sudden 4-100 times increased
discharge in a small stream did not displace yearling brown trout as long as heterogeneous
substratum provided micro-environments where flow was below critical velocity of fish
(HEGGENES, 1988a). In contrast, strong reductions in juvenile and adult brown trout
abundances, highly correlated with river gradient and instream cover, were observed after
a severe flood in seven New Zealand rivers (JOWETT and RICHARDSON, 1989). Fish
assemblages were more resistant to erosive floods in complex reaches with boulders and
woody debris than in more uniform reaches (PEARSONS et al., 1992). Finally, at a larger
scale, backwater habitats outside the main channel are refuges for fish during floods
(JOWETT and RICHARDSON, 1994; ALLOUCHE et al., 1999; BELL et al., 2001), revealing
the interest to maintain lateral connectivity of streams.

Droughts

Summer droughts, a natural feature of some geographic regions, are becoming
increasingly frequent in other regions due to anthropogenic disturbance. They may cause
mortality and decrease growth rates by reducing the volume of water available to the fish,
impeding or preventing their migration, increasing biotic interactions, killing aquatic
invertebrates and periphyton, and adversely affecting water quality (especially increasing
water temperature and decreasing dissolved oxygen) (ELLIOTT, 2000; VILA-GISPERT
et al., 2000). Generally, at low flow conditions, there is a loss of the cover that is principally
located near the stream margins. As a result, the deep isolated pools become essential
refugia for fish in streams subjected to frequent droughts and serve as a source of fish
recolonisation (SEDELL et al., 1990; FAUSCH and BRAMBLETT, 1991; ELLIOTT, 2000;
LABBE and FAUSCH, 2000). Intuitively, the role of cover in providing refuge from biotic
interactions must be exacerbated during low-flow periods. Numerous individuals are
confined in restricted pools with intensification of competitive interactions and predation
since pools both become relatively accessible to terrestrial predators and force small taxa
to remain close to piscivorous fish (MATTHEWS, 1998). But no study has explicitly
evaluated the role of submerged and overhead cover during this critical period.

Spawning

Many species of Cottidae, Cyprinidae, Ictaluridae, Esocidae, and Percidae spawn on
or in specific structures (woody debris, macrophytes, substratum crevices...), so instream
cover is essential for their reproductive and breeding behaviour (BALON, 1975; MANN,
1996). Even species such as lampreys which generally spawn in shallow water on open,
coarse bottoms have the ability to spawn beneath cover elements when environmental
features (predation pressure, high flows...) become constraining (COCHRAN and
GRIPENTROG, 1992).
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Spawning season is a critical stage in the life cycle of fishes, involving substantial
energetic costs imposed by gamete production (mainly for females) and spawning
migrations that many fishes undertake (JOBLING, 1994). Spawning and post-spawning
fishes in poor condition are likely to be more susceptible to diseases and predation, so
areas of cover may contribute to optimal reproduction by offering protection and places to
rest (CRISP, 1996; CLOUGH et al., 1998; SEMENCHENKO, 2000). Although they generally
spawn in the transitional zone between pools and riffles, the proximity of cover is
sometimes a factor in the selection of spawning grounds by some salmonid species,
especially for those that spend several weeks maturing near the spawning grounds
(BJORNN and REISER, 1991 and references therein). Further research is required in this
area as no quantitative data exist on the role of cover in governing spawning ground
location and lowering spawner mortality due to predation. It is probable that the removal of
cover may have disastrous consequences on the spawning success of numerous riverine
fishes.

Wintering

Winter is often considered a bottleneck for populations living at high latitudes and
altitudes, with low survival rates that are, however, variable among years. The abundance
of cover has long been recognized as the prominent factor governing winter survival of
juvenile salmonids (CUNJAK, 1996; SOLAZZI et al., 2000). SMITH and GRIFFITH (1994)
indicated that the availability of cobble cover increased rainbow trout survival by 11-24%
during their first winter and emphasized the thermal benefit of interstitial spaces for fish
since water temperature was 0.2-1.0°C higher than in the overlying layers.

In response to declining temperatures and photoperiod, rising flow or icing, many
stream-dwelling salmonid species exhibit a strong diurnal concealment behaviour in a wide
variety of covers (MCMAHON and HARTMAN, 1989; HEGGENES et al., 1993; CONTOR
and GRIFFITH, 1995; THUROW, 1997; SIMPKINS et al., 2000; VALDIMARSSON et al.,
2000) but from which they emerge after sunset to maintain some feeding activity
(JAKOBER et al., 2000). Daytime predation risk from diurnally endothermic predators (birds
and mammals) has been suggested as the major factor governing diurnal concealment
(VALDIMARSSON and METCALFE, 1998; METCALFE et al., 1999). It also reduces
downstream displacement and physical injury during freshets or ice formation (BUSTARD
and NARVER, 1975; TSCHAPLINSKI and HARTMAN, 1983). At a higher scale, juvenile
salmonids underwent shifts towards quiet lateral habitats, small tributaries, beaver ponds
or springs with groundwater acting as a thermal refugium, all of which are overwintering
sites with higher survival rates than main streams (BUSTARD and NARVER, 1975;
CUNJAK and POWER, 1986; JAKOBER et al., 1998).

Despite the fact that the quantity and quality of winter cover is recognized as a
limiting factor for salmonid overwinter survival, further work is needed for populations
distributed at lower latitudes and altitudes, that is to say experiencing considerably less
severe winter conditions. More research is needed to identify winter cover features, the
physiological and environmental parameters controlling wintering behaviour of riverine
fishes, and the contribution of cover in reducing winter mortality.

Cover use and trade-offs

Habitat selection by individuals is a compromise between benefits (e.g. food intake)
and costs (e.g. predation risk, energy expenditure). Both empirical and theoretical
approaches have provided strong evidence that cover will play a prominent role in
determining the outcome of these trade-offs that also depends on the physical and
biological characteristics of the sites as well as on the characteristics of the individuals
(GRAND and DILL, 1997).
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Patterns of use of a cover structure may vary strongly in relation with the fluctuations
of environmental and biotic factors. Potentially important factors include cover occurrence,
temperature, photoperiod, predation risk, conspecific density, foraging opportunities, and
other factors that influence scope for activity, growth rate, and survival (FAUSCH and
WHITE, 1981; TODD and RABENI, 1989; YOUNG, 1995; GIANNICO, 2000; VEHANEN
et al., 2000; ARMSTRONG and GRIFFITHS, 2001). Generally, young-of-the-year avoid
large accumulations of woody debris because of increased intercohort competition or
predation since piscivores also use them as home sites (ANGERMEIER and KARR, 1984;
LEHTINEN et al., 1997). Food availability seems to greatly control the extent of the
association between fish and cover and it allows to understand the equivocal results of the
literature. Field observations showed that in the summer growing season salmonids
preferred to occupy open areas without cover (WILZBACH et al., 1986; BUGERT et al.,
1991; HARVEY, 1998) because, by hindering the ability of these visual predators to detect
prey, the drawbacks of cover may have overridden the benefits (WILZBACH, 1985;
O’BRIEN and SHOWALTER, 1993). In the same way, experimental studies using
behavioural titration techniques reported that in risky sites the antipredator benefits of
cover can be compensated by food enrichment (GILLIAM and FRASER, 1987; GRAND and
DILL, 1997; GIANNICO, 2000).

Because of its different functional roles, cover use also varies broadly among
species (HEGGENES and TRAAEN, 1988; DOLLOFF and REEVES, 1990; THÉVENET,
1998), fish size or age (GRANT and NOAKES, 1987; MIKHEEV et al., 1994; REINHARDT
and HEALEY, 1997), sex (ABRAHAMS and DILL, 1989), life-history strategy
(HUNTINGFORD et al., 1988b; GRAND, 1999), and more generally with individual
energetic status. Several studies have shown that hungry or energy-stressed (i.e.
parasitized) animals had shorter hiding times or exhibited a much reduced response to
predators due to their greater energetic deficits (FRASER and HUNTINGFORD, 1986;
GODIN and SPROUL, 1988) so they compromised in a state-dependent fashion. Energetic
constraints associated with life history strategies could also affect the extent of cover use
since Atlantic salmon parrs which smolted in the spring following their birth accepted higher
predation risk and used less cover than parrs which took a further year in freshwater to
smolt (HUNTINGFORD et al., 1988b).

6 MANAGEMENT CONSIDERATIONS

Most research on ecological functions of cover structures has been on simple
salmonid assemblages. Although some studies performed in lowland streams with
multispecies assemblages have demonstrated strong correlation between cover and fish
abundance (THÉVENET, 1998), it is likely that the functions of cover structures rely on
different mechanisms in these streams. As already stated by CROOK and ROBERTSON
(1999), lowland streams are characterized by slower velocities, greater depths, higher
turbidity and productivity, all of which may minimize the role of cover for fish assemblages.
But reaches of the medium river continuum have intermediate characteristics in which the
role of cover for fish is consequent. For instance, in European streams, the barbel zone
(HUET, 1959) with its diversified community rich in piscivores exemplifies the type of
system where cover may have a significant role for the regulation of fish assemblages.
Similarly, regulated rivers have large and shallow reaches with minimum flow (e.g. by-
passed sections of the River Rhône) or unpredictable changes in flow like hydropeaking
(e.g. Lower Ain River) where instream cover may have a significant role for tempering either
biotic mechanisms or the effects of fluctuating hydrodynamic conditions.

Despite the recognition of the importance of cover for fish assemblages, river
improvement schemes in Europe have, and still often do, advocate the removal of instream
cover notably woody debris in order to maintain free flow. However, cover structures could
constitute one of the levers about which it could be possible to work for restoring the
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biological integrity of degraded lowland streams. For instance, woody debris that present
important carrying capacities for a large number of species and developmental stages
arouse a great interest because of management perspectives (THÉVENET, 1998; PIÉGAY
et al., 2000). Before enhancing the cover in a specific stream, it is necessary to really
identify whether cover is a limiting factor for the populations and the functional relationships
between cover structures and fish populations. Indeed, efficient restoration strategies partly
depend on a clear understanding of the functions and mechanisms that link riverine fish
with cover structures (GIANNICO and HEALEY, 1999; GIANNICO, 2000). Such an
individual, fine-scale approach is necessary to predict the effects of a specific cover
structure for fish and to understand processes at higher levels of ecological organization.
This approach also allows one to better understand the spatio-temporal dynamics of cover
use, an essential stage for underscoring bottlenecks during which the cover requirements
of fish are crucial. Moreover, it is evident that successful cover enhancement projects also
depend on larger scale habitat restoration strategies aimed at preserving both reach scale
components (e.g. riparian cover) and catchment scale components (e.g. hydrologic regime,
channel morphology, water quality and quantity) (PIÉGAY et al., 2000).

Moreover, whether the addition of cover structures really increases the carrying
capacity of a stream or causes a redistribution of the existing capacity still remains
controversial. Studies dealing with this problem are rare and concern low productivity
streams (GOWAN and FAUSCH, 1996). Clearly, it would be advisable to obtain field data
on this topic for lowland streams and large rivers since it is of utmost importance for all
management considerations. Hence, certain cover restoration works initiated at a larger
scale by management agencies will make it possible for scientists to initiate experiments
with longer-term duration for overcoming natural fluctuations of populations, evaluation of
the demographic processes responsible, and statistical reliability. In addition, although it is
justified from a fishery purpose to commonly use cover-abundance relationships, it
becomes less justified from a conservation purpose i.e. from a perspective of population
maintenance or viability, since density is not necessarily a clue of the state of well-being
of a population.

CONCLUDING REMARKS

Through this paper, the author has tried to highlight the numerous functions of
different kinds of cover and that the mechanisms of cover use strongly vary with spatio-
temporal and biological scales. She also tried to demonstrate the ambiguous nature of
cover at the interface between bottom-up and top-down factors and between abiotic and
biotic factors. As ectotherms, fishes have low metabolic demands at the annual scale and
spend considerable time simply resting. As a consequence, one can expect the role of
cover to be great in terms of population dynamics, especially for populations living at high
latitudes and altitudes (i.e. in low productivity environments) where the warm growing
season is short and then the inactivity period is long. Our understanding of the physical
and biological linkages between fish and different kinds of cover structure throughout the
river network really needs to be improved. Experimental studies are required to corroborate
the results of descriptive studies and to further elucidate the potential role of cover in
community dynamics. It is likely that the development of either more biologically realistic
(by including prey abundance, predators or competitors) or energy-based models of habitat
selection will disentangle the true functional importance of cover structures (GROSSMAN
et al., 1995). For all management purposes, the key in a given stream is to directly
establish the causal mechanisms for the relationship between cover and fish i.e. why and
when a specific taxon uses different cover structures, and especially not to extrapolate the
results from a specific stream to another. Only then can managers really establish whether
cover is a subcomponent of habitat that is essential for population maintenance or not.
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